
CHAPTER - 3

ELECTRICAL MOTORS

Three electrical motors are being used in TUCATU:

1. Main motor

2. Steering wheel motor

3. Ultrasonic sensor motor

3.1 Main Motor

Main motor is a wiper motor. This motor is produced as having 2-step speed. Since

continuous speed control is aimed in this project one of these speeds is chosen. Electrical

characteristics of the motor are:

• Working voltage : 12 V

• Current (unload) : 1,2 A

• Current (load) : 1,6 A

• Motor type : Permanent magnetic DC motor

3.1.1 Main Motor Drive Circuit

Two direction movement and continuous speed control is needed. It is a fact that the

inspection of the direction and the speed will be done by computer. A specific H-Bridge is

designed as a motor drive circuit. The stages of this design are given below.

H-Bridge is basically formed of four transistors as shown in Figure 3.1.

Motor

+V

GRN

T1

T3

T2

T4

BBAA

Figure 3.1: H-Bridge

Only one pair of the transistors is on saturation state at a time while other pair is at cut-off

state. The motor connected to this pair of transistors rotates either on CW or CCW. For

example, to keep the pair T3-T2 on and T4-T1 off, the point BB should be connected to

+V and the point AA to the ground.

There is no possibility to directly connect the PIA ports to the points AA and BB. Since

the outputs of PIA ports have capability of 5V and 10 mA sink/source current, some

additional circuit is necessary.

The first stage of addition is voltage amplifier. The second one is current amplifier. In

order to increase hfe of power transistors, the Darlington method is used. The voltage

amplifiers are added before AA and BB points. The final schematic of H-Bridge is given in

Figure 3.2. Electrical specification of MA and MB points are suitable to PIA outputs.

1K5 1K5

120 120

820 820

820820

6K2 6K2

6K26K2

150 150

150150

T3
T3*

T1
T1*

T5 T6
Motor

T2

T4
T4*

T1*

MA MB
A B

+12V

GND

Figure 3.2: Final Design of H-Bridge

Diodes are used for protection of power transistors against a negative pick. The names of

the components are listed below:

T1 – T2 : BD243

T3 – T4 : BD244

T1* - T2* : BC547

T3* - T4* : BC557

T5 – T6 : BC547

The value of the resistors is calculated according to the working condition of the circuit.

3.1.2 Main Motor Speed Control

The most efficient method for the speed control of the main motor is considered to be

PWM. By the help of this method, power usage is minimized. The technique of PWM

usage instead of using linear amplifiers is a more preferred method by means of power

loss. Due to the fact that TUCATU has a limited power source (rechargeable battery), the

voltage of motor control circuit is to be cut when the robot does not move. For this

purpose, the circuit in Figure 3.3 is designed.

Figure 3.3: Motor Control Circuit

The connections between the motor control circuit and the micro controller are given in

Table 3.1.
Table 3.1: Motor control connection

Connector J2 Motor Control Circuit PTD

J2 (37) MD PTD0

J2 (35) MB PTD4

J2 (36) MA PTD3

It is important to control the speed of the robot while going forwards; that is why the speed

control is done in the forward direction. The speed control in the backward direction is not

considered.

The program about the motor speed control is given in the Chapter 9.2.2.

3.2 Steering Wheel Motor

A stepper motor is used for the motion of the steering wheel motor. This stepper motor is

taken from a printer which is broken down. The method of the microcontroller to generate

the signals required to drive the stepper motor is chosen. Thus, the hardware costs are

minimized. The circuit designed is shown in Figure 3.4.

12 V

MOTOR
CON TRO L
CIRCUIT

+12V

PTD0
1K

Figure 3.4: Step motor drive circuit

Instead of using discrete transistors and diodes, ULN2004 transistor array is used. The

forms of the signals providing the movement of stepper motor are shown in Figure 3.5.

A1

B1

A2

B2

Figure 3.5: The form of stepper motor control signals

The program written in order to produce these signals is given in the Chapter 9.2.3

Step angle of the motor is 9 degree. As mentioned in Chapter 2, a gearbox is connected

between steering wheel motor and front wheel. The reduction ratio of gearbox is 60.

Therefore 2 steps are required for 1 degree steering angle.

The connections between the steering stepper motor and the microcontroller is given in

Table 3.2.

6K8

6K8

6K8

6K8

A1

A2

B1

B2

Table 3.2 : The connections between the steering stepper motor and the micro controller

Connector Steering Wheel Step Motor Port

J2 (4) RA1 PTA4

J2 (3) RA2 PTA5

J2 (2) RB1 PTA6

J2 (1) RB2 PTA7

3.3 Ultrasonic Sensor Motor

The ultrasonic sensor motor is also a stepper motor and taken from an old hard disk drive.

The hardware used is the same as the one used in the steering wheel motor. The signals

providing the movement of the motor are again produced by software.

Step angle of the motor is 9 degree.

The connections between the sensor stepper motor and the microcontroller is given in

Table 3.3.

Table 3.3: The connections between the sensor stepper motor and the micro controller

Connector Steering Wheel Step Motor Port

J2(7) DA1 PTA0

J2(8) DA2 PTA1

J2(6) DB1 PTA2

J2(5) DB2 PTA3

CHAPTER - 4

SENSORS

There are two sensors in TUCATU.

1. Path Measurement Sensor

2. Obstacle Sensor

4.1 Path Measurement Sensor

An original sensor is attached to the front wheel in order to find the distance travelled

along the path forwards and backwards. The technical scheme of the sensor is shown in

Figure 4.1.

+5V+5V

Figure 4.1: Path Measurement Sensor

A 3,5 inch floppy disk is used as the disc of the path measurement sensor. Sixteen holes

are cut with the intervals of 22, 5 degree.

 2 x 11,25 x 3,14

resolution =  ═ 4,41 cm

16

As calculated above every one-interrupt shows 4,41 cm distance passed along the path.

The information of the direction given to the main motor circuit decides whether the robot

is going forwards or backwards. The software related to this sensor is given in the Chapter

9.2.4.

4.2 Obstacle Sensor

Ultrasonic receiver and sender are used as obstacle sensors. The ultrasonic receiver and

sender are made resemble to radar and connected to sensor stepper motor as shown in

Figure 4.2.

R S
 Step
 Motor

Figure 4.2: Obstacle Sensor

The aim of the obstacle sensor is to detect the obstacles in front and to measure the

distance to the walls on the left and right sides. For these purposes, while moving, sensor

system is at the 0 º angle position to detect the obstacles in front of the robot. There are two

methods to measure the distance by using ultrasonic receiver and sender:

1. Analog

2. Digital

In the analog method, the sender generates a signal at a certain frequency and amplitude.

The signal on the output of the receiver is the signal reflected from the obstacle. The

amplitude of this signal is related to the distance of the obstacle to the receiver.

In the digital method, the sender generates a signal at a certain frequency for a certain time.

The time the signal generated is recorded. The delay is calculated when the receiver gets

the reflected signal. The delay helps to calculate the distance of the obstacle to the sensor.

Digital method is chosen for this project. The required wave form is generated by

microcontroller in terms of software. In order to amplify very low level signal of receiver

two cascade amplifier have been used. The related circuit is shown in Figure 4.3.

5V

10K

10K22nF

22nF

22nF22nF 1K

220K

1K

220K

220

5K6

2K2

5K6

GND
PTB2

PTB4

PTD7

Transmitter

Figure 4.3: Ultrasonic receiver and transmitter circuit

Signal generation and detection software is given in Chapter 9.2.5.

CHAPTER - 5

LIGHT LEVEL MEASUREMENT

TUCATU has the capability of measuring the light level of environment. As a result of this

measurement TUCATU decides whether or not the head light should be on.

In order to measure the light level a photo resistor is included. The circuit is so simple and

given in Figure 5.1.
5V

PB 0 (ADC input)

Photoresistor

470

Figure 5.1: Light Level Measurement Circuit

As seen in Figure 5.1 the output of this light level measurement circuit is connected to

ADC of MC6809. The related software is given in Chapter 9.2.7

If the light level is assumed to be low, TUCATU turns on the headlight. The headlight

circuit is given in Figure 5.2

+12V

PTB2
220

Head Light

Figure 5.2: Head light control circuit

CHAPTER - 6

ALARMS AND SIGNALS

During the data entry from the remote control some indicators are necessary. These

indicators confirm if the data is valid or not. Signal lights are also needed to inform the

user about the action of TUCATU. Some warnings and alarms are needed in certain

circumstances. Thus, a light and a voice alarm system have been installed.

The light signal system has been used for debugging purpose.

6.1 Signals

The signal light consisting of 3 LEDs each, are placed on the back right and back left sides

of TUCATU to inform the people around while turning left and right. The circuit designed

is given in Figure 6.1 and the picture is given in Picture 6.1

Picture 6.1: Signal system

Red : indicates stop condition

Green : indicates forward motion

Yellow : indicates turning direction

+5V

GND

RightLeft

Red RedGreen GreenYellow Yellow

PTC4 PTC5 PTC6 PTC1 PTC2 PTC3

Figure 6.1: Light signal circuit

6.2 Voice

When TUCATU receives a key press from the IR remote control, she generates a short

beep.

If the master makes a mistake during the data entry (e.g. missing parameters, wrong

sequence) TUCATU generates “di da, di da, dit, dit” signal.

TUCATU also has the facility to alarm whenever she encounters an obstacle. The block

diagram of the voice system is given in Figure 6.2.

ALARM
CIRCUIT

+5v

PTC0

Figure 6.2: Voice Alarm System

The voice is controlled by the signals coming from PTC0 of MC6809.

CHAPTER - 7

REMOTE CONTROL AND TEACHING

It is planned TUCATU to have three working modes:

1. Free

2. Training / Teaching

3. Playback

In the free mode, the master moves TUCATU freely. The motion is not recorded.

In the training mode, a master teaches the required movements. Although a special

“teaching” keyboard or a PC would have been used, in this project, it is preferred to use a

TV remote control. This solution provides flexibility beside low cost. Each training action

named “role” consists of 42 segments. Segment simply means one of the motion types and

the speed information. TUCATU can store up to 96 roles one of each is 256 Byte.

In the playback mode, TUCATU repeats what she learnt. The master may choose one of

the recorded programs from 0 to 9. For the time being, 10 roles are considered sufficient.

7.1 IR Remote Control

It is known that two international standards are being used with TV IR remote controls:

1. RC5

2. RECS 80

In RC5 standard, transitions between 1 and 0 determine the logical state whereas in RECS

80 standard duration of pulse is constant and space duration determines if it is logical 1 or

0. In Figure 7.1 RECS 80 format is shown.

Start 0 1 0 0

Figure 7.1: RECS 80 Format

7.2 IR Transmitter and Receiver

In this project, since the remote control used in Sony Systems is chosen, RECS 80 standard

is used. This remote control can send 12 bits = 4096 different commands. For this

application, 8-bit data is considered to be sufficient.TK19 IC optical sensor produced for

this purpose is used to receive the signals the remote control sends. The output of TK19 is

connected to the microcontroller for sending interrupts. One more interrupt input is needed

since IRQ input is reserved for path measurement sensor. T1CH0 (PTD6) is initialized and

used for this purpose.The signal to be decoded is connected to PTD1. The connection of

TK19 to the microcontroller is shown in Figure 7.2.

Optical
Sensor

GND

+5V

To PTD5

 Figure 7.2: The Optical IC

7.3 Decoding of IR Remote Control Signals

The signal received must be decoded. The decoding process is implemented by a program.

No additional hardware is used. Codes of the signals coming from the IR remote control

are given in Table 7.1.

Table 7.1: Codes of IR control unit

Name of the key Code of the key First 8 bit in
Hex

Function in TUCATU

0 1010 0001 0000 91 Number
1 0000 0001 0000 01 Number
2 1000 0001 0000 81 Number
3 0100 0001 0000 41 Number
4 1100 0001 0000 C1 Number
5 0010 0001 0000 21 Number
6 1010 0001 0000 A1 Number
7 0110 0001 0000 61 Number
8 1110 0001 0000 E1 Number
9 0001 0001 0000 11 Number

TLX 1111 1101 0000 FD Destination
TV 0001 1101 0000 1D Speed Motion
-/-- 1011 1001 0000 B9
i+ 0101 1101 0000 5D Training mode

↔↕ 1011 1100 0100 BC
OK 1010 0111 0000 A7 Flash
→ 1010 0101 0000 A5 Speed Steering
Θ 1010 1001 0000 A9 Stop

Mute 0010 1001 0000 29 Step Number
Menu 0000 0111 0000 07 Menu

◄ 0011 0011 1000 33 Left turn
► 0111 0011 1000 73 Right turn
▲ 1011 0011 1000 B3 Forward
▼ 1111 0011 1000 F3 Backward

Prog. Up 0000 1001 0000 09
Prog Down 1000 1001 0000 89
Volume Up 0100 1001 0000 49 Speed up

Volume Down 1100 1001 0000 C9 Speed down

The program written for decoding the signals coming from the IR remote control is given

in the Chapter 9.2.6.

In the next chapter, all capabilities of TUCATU and how to use TUCATU will be

explained in detail.

CHAPTER - 8

HOW TO USE TUCATU

When the power is turned on, the system starts in free mode. TUCATU is now can be

directed via a remote control handset by her master. As said before, in free mode, all

capabilities of TUCATU may be examined without recording the motion to the FLASH.

Functions of the keys on the remote control are given in the previous chapter. Now, how to

use these functions will be explained.

For better understanding picture of the remote control is given in Figure 8.1.

Figure 8.1: The Remote Control

The master may simply press the ▲ key and let TUCATU go forward at the minumum

speed. She then may use volume up and volume down keys for speeding up and down

TUCATU. Another way to determine the motion speed is to use TV key. The master

should first press TV then a speed number between 1 and 9. If she presses a non-number

key she will get an error message like “di da di da dit dit”. In this case, she must press TV

key again, then a number and then ▲. TUCATU now goes forward at the required speed.

Motion speed may be changed whenever the master wants even if TUCATU is moving.

What worths to realize is that TUCATU does not immidiately reaches the given speed. She

may gradually speed up as the conclusion of PWM usage. This provides comfort.

TUCATU stops going when the master presses the Θ button. She slows down and finally

stops in seconds.

▼ key is for backward motion. TUCATU goes backward when after this key is pressed.

There is no speed control on backwards.

On forward and backward motion a destination value can also be entered before the

motion. To do this, 4 digit numbers is to be entered after TLX key is pressed. TUCATU, in

this case, will go up to this destination and stop by self. If the master knows the distance

TUCATU to go, this function may be necessary.

◄ and ► keys are used for left and right directions respectively. When one of these keys

is pressed TUCATU begins turning to the required direction at the minumum steering

speed. The master can enter steering speed with the key → and a number between 1 and 9.

A non-number entrance will conclude in error. → , a number and ◄ or ► keys should be

pressed respectively for steering speed change.

Another concept with right and left motion is the number of steps that the stepper motor

will have. Like destination in forward and backward motion, number of steps may also be

determined before TUCATU turns right or left. In order to enter the two digit value for

number of steering steps the master should first press the MUTE key. TUCATU turns

required number of steps and stops turning.

TUCATU not only goes forward and backward or turns right and left, she also may turn

right or left while going forward or backward. Right forward, right backward, left forward,

left backward motions includes the functions explained above, too.

Some easy usage of the remote control is thought and implemented. Below is given some

combinations:

TUCATU turns left if ◄ key is pressed. She stops turning if

1- Θ key is pressed.

2- ◄ key is pressed.

3- ▲ key is pressed. She just goes forward.

TUCATU turns right if ► key is pressed. She stops turning if

1- Θ key is pressed.

2- ► key is pressed.

3- ▲ key is pressed. She just goes forward.

TUCATU goes right forward if ▲ then ► key is pressed. Then if,

1- ► key is pressed, she goes just forward.

2- ◄ key is pressed, she goes left forward.

3- ▲ key is pressed, she goes just forward.

4- ▼ key is pressed, she gradually slows down and stops,then goes just backward.

TUCATU goes left forward if ▲ then ◄ key is pressed. Then if,

1- ◄ key is pressed, she stops turning and goes just forward.

2- ► key is pressed, she goes right forward.

3- ▲ key is pressed, she stops turning and goes just forward.

4- ▼ key is pressed, she gradually slows down and stops,then goes just backward.

TUCATU goes right backward if ▼ then ► key is pressed. Then if,

1- ► key is pressed, she stops turning and goes just backward.

2- ◄ key is pressed, she goes left backward.

3- ▼ key is pressed, she goes just backward.

4- ▲ key is pressed, she stops and goes just forward.

TUCATU goes left backward if ▼ then ◄ key is pressed. Then if,

1- ◄ key is pressed, she stops turning and goes just backward.

2- ► key is pressed, she goes right backward.

3- ▼ key is pressed, she stops turning and goes just backward.

4- ▲ key is pressed, she stops and goes just forward.

Motion speed, steering speed, number of steps and destination values are applicable in

those combinations.

i+ key is reserved for switching to the training / teaching mode. The master presses this

key intending to record the following sequence of motion. All types of motions with their

parameters like motion speed, steering speed, destination or number of steps are written to

Flash after the master finishes and presses OK button. A number from 0 to 9 should also

be entered immidiately after the OK key. This number specifies where the role is written in

Flash. Although it seems only 10 roles (0-9) may be recorded to the Flash it is just because

we chose to use only one digit number. 96 roles consisting 42 segments of 256 Byte would

have taken place in Flash memory if 2 digit entries have been allowed.

In the playback mode, it is possible to select and run the programs taught before by the key

MENU and the number (0 – 9) where the role was recorded into. In this mode, TUCATU

stops and alarms if there is any obstacle in front of her. She continues her motion in case

the obstacle disappears.

TUCATU turns her headlight on whether the environment is dark. She turns it off when

there is light enough to see around.

CHAPTER - 9

SOFTWARE

The software is composed of a main program waiting for interrupts. Special functioned

programs running under the management of Interrupt Service Routines (ISR) are called.

9.1 Operation Modes

The management program is implemented for three modes:

1. Free mode

2. Training mode

3. Playback mode

9.1.1 Free Mode

In this mode, master, examines all capabilities of TUCATU. He can test all motion types,

speed up and speed down features. He also can examine data entry features of TUCATU

such as a given step number for steering, speed value for forward motion etc.

TUCATU evaluates the signals coming from the remote control and starts doing the

movements according to the instruction given:

1. Moving forward at a given speed

2. Moving backward at a predefined speed

3. Turning right and left while going forward

4. Turning right and left while going backward

5. Changing steering speed during right, left, right forward, left forward motion

6. Gradually slowing down

7. Stopping

No data is recorded at the end of the free mode.

9.1.2 Training Mode

In addition to the features in free mode, TUCATU measures and records how far she has

gone in forward and backward directions and writes the needed values to the Flash in order

to work in the playback mode.

9.1.3 Playback Mode

TUCATU moves according to the programs taught or loaded before. She generates a voice

alarm in case there is an obstacle in front of her.

9.2 Programs

The program which is developed for this project has almost 2400 lines of assembly code

and the size of the object code is about 9 KByte. In this section, only important parts of the

programs and the flowcharts are given. The names of these programs are:

1. Main program

2. Motion motor program

3. Steering motor program

4. Path sensor program

5. Obstacle detection program

6. IR remote control decoding program

7. Light level measurement program

8. Data entry programs

9. Motion speed control program

10. Stop and end of segment programs

11. Flash erase and write programs

12. Training program

9.2.1 Main Program

The core of the software is the Main program. This program is the operating program of

TUCATU. Mode selection and running of required program is organized by the main

program. The flowchart of the main program is given in Figure 9.1

Power-on
Reset

Perform
Initilization
functions:

gpio_init, timer_init

Perform
Default
process

Enable IRQ interrupt
Enable T2CH0 input

capture interrupt

Wait for interrupt
on reset : T2CH0 int

on action : T2CH0 or IRQ

System test:
light and alarm test

main function

Figure 9.1: The flowchart of the Main program

33

1122

44

31

41

32

42

The main program is given as follows:

* -- *
* Tucatu Main *
* -- *

Main:
 rsp ; stack pointer reset ($00FF)
 clra ; register init
 clrx
 sta internal_error ; clear internal errors counter
 mov #$31,CONFIG1 ; MCU runs w/o LVI and COP support
 jsr gpio_init ; GPIO initialization
 jsr timer_init ; TIM initialization

 jsr default ; Default values

 lda #$00 ; Test
 sta PTC
 lda #$FE
 sta PTB

 jsr one_second
 mov #$7F,PTC
 mov #$00,PTB

 clr mode ; mode=0
 clr function ; clear function code
 clr segment ; clear segment number

 lda T2SC1 ; T2SC1 is read
 lda #$08 ; %00001000
 sta T2SC1 ; T2SC1 CHOF flag cleared,interrupt-off

 lda #$04
 sta INTSCR ; IRQ Interrup Enable

 lda T2SC0
 mov #$48,T2SC0 ; Timer Input Capture Interrupt Enable
 cli ; Enable all interrupt

bekle bra bekle ; Wait for interrupt

The second part of the main program is considered as a dispatcher. The flowchart of this

part is given in Figure 9.2.

The variable motion_type has the information about the type of motion. It is zero if there is

no action. Below is the motion types of the directions.

Disable all interrupts

Perform the
functions

Code_Read
Code_Eva

motion_type=
0

composite Perform the
function
speed+

Perform the
function
speed-

func=0:1
Perform the

Error subroutine

func=2
Perform

the function
Step_Number

func=3
Perform
the Stop
Process

func=4
Perform

the function
Menu

func=5
Perform

the function
Flash

func=6
Perform

the function
Teach_Mode

func=7
Perform

the function
Speed_Stee

func=8
Perform

the function
Speed_Motion

func=9
Perform

the function
Destination

func=A
Perform

the function
Str_Motion

Return main function
and wait for command

Return main function
and wait for command

Return main function
and wait for command

Return main function
and wait for command

Return main function
and wait for command

Return main function
and wait for command

Return main function
and wait for command

Return main function
and wait for command

Return main function
and wait for command

Return main function
and wait for command

plain

Y

Y

Y

N

Y

Y

Y

Y

Y

Y

Y

Y

N

N

N

N

N

N

N

N

Y

code=49

code=C9

N

N

perform
kumanda_kes

function

Y

N

Figure 9.2: The flowchart of the dispatcher program

The source code of the program is as follows:

* -- *
* REMOTE CONTROL INTERRUPT *
* -- *

Kumanda_Kes:
 sei ; Disable all interrupt
 pshh
 lda T2SC0 ;
 mov #$08,T2SC0 ; Disable timer ch=1 int and clear int flag
 jsr code_read ; Read code
 lda motion_type
 beq yali ; Plain motion
 bra composite
yali jmp yalin

* -- *
* Composite Motion *
* -- *

speed+ lda SPDMOTION
 cmp #$6
 bge sinir
 jsr eof_segment
 lda SPDMOTION
 inca
 sta SPDMOTION
 sta old_SPD
 ldhx T1CH0H
 aix #7F
 aix #7F
 sthx T1CH0H
 sthx speed
hopa jmp rtf_int
sinir mov #$6,SPDMOTION
 mov #$6,old_SPD
 bra hopa

speed- lda SPDMOTION
 cmp #$0
 ble sinira
 jsr eof_segment
 lda SPDMOTION
 deca
 sta SPDMOTION
 sta old_SPD
 ldhx T1CH0H
 aix #-7F
 aix #-7F
 sthx T1CH0H
 sthx speed
hoppa jmp rtf_int
sinira mov #$0,SPDMOTION
 bra hoppa

durdur jsr stop
 jmp rtf_int

composite
 mov #$1,compos
 lda code
 cmp #$A9 ; If Stop key is pressed
 beq durdur
 cmp #$49

 beq speed+ ; Speed up
 cmp #$C9
 beq speed- ; Speed down

Duz_Yan lda code
 bra yalin_2
 jmp rtf_int

* -- *
* PLAIN MOTION - Parameters entry *
* No connection with previous motion *
* -- *

yalin clr compos
 lda code
 sta code_old
 clr stop_flag

yalin_2 lda function
 beq hataya ; unused code
 cmp #$1
 beq number ; 0-9
 cmp #$2
 beq Step_num ; Entry for step number; MUTE
 cmp #$3
 beq Sto ; Stop the action; STOP
 cmp #$4
 beq Men ; Jump to stored programs; MENU
 cmp #$5
 beq Flas ; Store the last action; OK
 cmp #$6
 beq Teach_Mode ; (i)
 cmp #$7
 beq Speed_Ste ; Entry for steering speed;
 cmp #$8
 beq Speed_Motio ; Entry for motion speed; TV
 cmp #$9
 beq Destinat ; Four digit data entry for destination TLX

* -- *
* Plain Motion *
* -- *

 cmp #$A
 beq Str_motio ; Straight motion
 cmp #$B
 beq Ste_motio ; Direction Control Motion

* -- *
* Unknown code and function will be done *
* -- *

 bra rtf_int

* -- *
* data entry error *
* -- *

hataya jsr hata
 bra rtf_int

Number jsr hata
 bra rtf_int

Teach_Mode ldhx #$0100 ; RAM is to be cleared from 100 to 200

 clra
sil_ sta ,x
 aix #$1
 cmphx #$0200 ; 256 B 42 segments may be written

 ; between 100-200
 bne sil_
 mov #$00,segment
 mov #$AA,mode ; teach mode ->AA
 bra rtf_int

Sto jsr Stop ; Call Stop motion Subroutine
 bra rtf_int

Str_Motio jsr Str_Motion ; Call Straight Motion Subroutine
 bra rtf_int

Ste_Motio sta code_old
 jsr hata ; ste motion cancelled
 bra rtf_int

Speed_Ste jsr Speed_Stee ; Call Steering Speed Read Subroutine
 bra rtf_int

Speed_Motio jsr Speed_Motion ; Call Straight Motion SpeedRead Subroutine
 bra rtf_int

Step_Num jsr Step_Number ; Call Step number Read Subroutine
 bra rtf_int

Men jsr Menu ; Call Menu Subroutine
 bra rtf_int

flas jsr flash ; Call flash write subroutine
 bra rtf_int

Destinat jsr destination ; Call Destination data entry and convert

 ; Subroutine
 bra rtf_int

rtf_int lda T2SC0
 mov #$48,T2SC0
 pulh
 cli
 rti

9.2.2 Motion Motor Program

The main motor program consists of direction control , speed control by PWM and power

control routines. Main motor program includes a decision part, forward and backward

programs. The decision program also covers right and left motion. The flowcharts of these

programs are given in Figure 9.3, Figure 9.4, and Figure 9.5 respectively.

Figure 9.3: The flowchart of motion decision program

Execute Str_Motion
function enable IRQ

code=33

code=73

code=B3

code=F3

Execute turn left
process

Execute turn right
process

Execute
str_forward

process

Execute
str_backward

process

return

return

return

return

Y

Y

Y

Y

N

N

N

left command

right command

forward command

backward command

Execute
str_forward

process

motion_
type=00

motion_
type=33

motion_
type=32

motion_
type=31

old_SPD
!=

SPDMOTION

perform
eof_segment

function

clear stop_flag
clear ACTUAL_1
clear ACTUAL_2
motion_type=33

Y

N

N

N

perform
stop

function

N

Y

Y

Y

N

Y

1

motor power on

perform
new_speed

function

destina
=0

perform
hesap

function

temp=
BB

mode=
1

return

perform
stop

function

return

return

Y

N

N

Y

NY

perform
power

function

1

Figure 9.4 : The flowchart of straight forward motion control program

Execute
str_backward

process

motion_
type=00

motion_
type=44

motion_
type=42

motion_
type=41

perform
eof_segment

function

clear stop_flag
clear ACTUAL_1
clear ACTUAL_2
motion_type=44

Y

N

N

N

perform
stop

function

N

Y

Y

Y1

motor power on
back condition

perform
new_speed

function

destina
=0

perform
hesap

function

temp=
BB

mode=
1

return

perform
stop

function

return

return

Y

N

N

Y

NY

perform
oto_bw
function

1

Figure 9.5: The flowchart of backward motion control program

The source code of the decision program is given below:

* -- *
* STR_MOTION - Straight Motion Control Subroutine *
* Tucatu moves forward or backward (B3, F3) *
* Turn steering right or left (73, 33) *
* Left forward B2, Right forward B4 *
* left backward B1, Right backward B5 *
* Steering turn right or left *
* -- *

Str_Motion:
 mov #$5B,PTC
 mov #$5B,BPTC ; Green LEDs are on
 lda #$04
 sta INTSCR ; IRQ Interrup Enable
 lda code
 cmp #$33
 beq Lefte ; Turn left, Code is $33
 cmp #$73
 beq Righte ; Turn right, Code is $73
 cmp #$B3
 beq Str_forward ; Str_forward, Code is $B3
 cmp #$F3
 bra Str_backward
 jsr da
 jsr da
 rts

Lefte jmp Left
righte jmp Right

The source codes of backward and forward motion program as well as related programs are

given as below.

Str_backward:
 lda motion_type
 beq str_bw ; motion_type 0 => start motion
 cmp #$44 ; motion_type 44 => rts
 beq git_1
 cmp #$42 ; motion_type 42,41

; eof_segment, motion_type<-44, rts
 beq str_bw_
 cmp #$41
 beq str_bw_
 jsr stop ; motion_type 33,31,32,11,22 -> jsr stop
 clr stop_flag
str_bw mov #$44,motion_type
 clr ACTUAL_1 ; Reset actual
 clr ACTUAL_2
oto_bw lda #$19 ; D0, D3, D4 output,others input
 sta DDRD
 lda #$09 ; Turn on power and back condition
 sta PTD
 cli ; enable interrupt
 mov #0,T1CH0H ; PWM out = 0, mode= autonomous=>
 ; start motion. Come from Menu.
 mov #0,T1CH0L ; TUCATU moves back
 lda destina
 beq git_1 ; If destination value is not present
cont bsr hesap
 lda temp
 cmp #$BB
 beq cont

 lda mode ; does not stop if mode=autonomous
 cmp #$1
 beq git_1
 jsr stop ; reach end of destination
 rts
git_1 rts
str_bw_ jsr eof_segment
 bra str_bw

* (Destination - actual) > 0 continue ; 16 bit compare

hesap ldhx dest_1
 cphx ACTUAL_1
 blo kucuk
 bhi buyuk
esit lda #$00 ; destination = actual
 sta temp
 bra durak
buyuk lda #$BB ; destination > actual
 sta temp
 bra durak
kucuk lda #$CC ; destination < actual
 sta temp
durak rts

Str_forward:
 lda motion_type
 beq str_2
 cmp #$33
 beq str__ ;motion_type 33 => rts
 cmp #$32 ;motion_type 32,31 => eof_segment
 beq str_1
 cmp #$31
 beq str_1

jsr stop ;motion_type 11,22,44,41,42 =>stop
motor by stop

 bra str_2

str__
 lda old_SPD
 cmp SPDMOTION
 beq bitti
 jsr eof_segment

str_2 clr ACTUAL_1 ; Reset actual
 clr ACTUAL_2
 clr stop_flag
 mov #$33,motion_type
 lda #$19
 sta DDRD

power lda #1 ; Motor Power on
 sta PTD

speed_up cli
 clrx
 clra
oto_fw jsr new_speed

*Motion motor reach to maximum speed

bitti lda destina ; destination flag, 0 if there is no value
 beq bitim

cont_1 bsr hesap
 lda temp
 cmp #$BB
 beq cont_1
 lda mode
 cmp #$1
 beq bitim
 jsr stop

bitim mov SPDMOTION,old_SPD
 rts

str_1 lda old_SPD
 cmp SPDMOTION
 bne str__
 jsr eof_segment
 bra str_2

9.2.3 Steering Wheel Motor Program

Steering wheel motor is a stepper motor. This program is used for stepper motor control.

The abilities of this program are:

• Direction control

• Number of steps

• Speed control

The flowchart of the steering wheel motor control program consists of two programs; Left

and right. The flowcharts of these programs are given in Figure 9.6 and Figure 9.7.

Execute turn left
process

motion_t
ype=0

perform
eof_segment

function

motion_t
ype=31

motion_t
ype=33

motion_t
ype=41

motion_
type=44

motion_
type=22

change return point
adding 8 to stack pointer

motion_type=32
clear stop_flag

2

change return point
adding 8 to stack pointer

motion_type=42
clear stop_flag

change return point by
adding 8 stack point

register

motion_type=22

motion_type=22

change return point
adding 8 to stack pointer

motion_type=0

return

N

Y

Y

N

Y

N

N

Y

N

Y

N Y

left

old motion right forward

old motion forward

left forward

left backward

start turning
left

motion_
type=32

motion_
type=42

motion_type=33

return

motion_type=44

return

Y

N

Y

forward

backward

old motion right backward

old motion backrward

Figure 9.6-a : The flowchart of the steering wheel motor control program (left, part-1)

2

stop_
flag=0

motion_type
=32:42:22

step_num
_flag=0

inc A_STPSTE

inc A_STPSTE

dec STPSTE

STPSTE=0

return

return

return

N

Y

N

Y

Y

Y

Y

N

Execute turn
oto_left
process

point left step parameters

NoS=1 and # of Step=0

Get the parameters of sequences

Put this value to PTA

Delay, related with Speed_Stee

NoS ++

NoS > 4

NoS : Number of step motor's
 Sequence

Calculate step number
and toggle signal light

N

Left signal light on and off
according to the steering speed

N

Figure 9.6-b : The flowchart of the steering wheel motor control program (left, part-2)

Execute turn right
process

motion_
type=0

perform
eof_segment

function

motion_t
ype=32

motion_
type=33

motion_t
ype=42

motion_
type=44

motion_
type=11

change return point
adding 8 to stack pointer

motion_type=31
clear stop_flag

2

change return point
adding 8 to stack pointer

motion_type=41
clear stop_flag

change return point by
adding 8 stack point

register

motion_type=11

motion_type=11

change return point
adding 8 to stack pointer

motion_type=0

return

N

Y

Y

N

Y

N

N

Y

N

Y

N Y

right

old motion left forward

old motion forward

 right forward

right backward

motion_
type=31

motion_
type=41

motion_type=33

return

motion_type=44

return

Y

N

Y

forward

old motion backrward

Figure 9.7-a : The flowchart of the steering wheel motor control program (right, part-1)

2

stop_
flag=0

motion_type
=31:41:11

step_num
_flag=0

inc A_STPSTE

inc A_STPSTE

dec STPSTE

STPSTE=0

return

return

return

N

Y

N

Y

Y

Y

Y

N

Execute turn
oto_right
process

point right step parameters

NoS=1 and # of Step=0

Get the parameters of sequences

Put this value to PTA

Delay, related with Speed_Stee

NoS ++

NoS > 4

NoS : Number of step motor's
 Sequence

Calculate step number
and toggle signal light

N

Right signal light on and off
according to the steering speed

N

Figure 9.7-b : The flowchart of the steering wheel motor control program (right, part-2)

The source code of the right and left motion control programs and related programs are

given below:

* -- *
* Steering Control *
* -- *

left: lda motion_type
 beq left__
 jsr eof_segment

 lda motion_type
 cmp #$33
 beq fw_left_

 cmp #$44
 beq bw_left_

 cmp #$32
 beq _fw

 cmp #$42
 beq _bw

 cmp #$31
 beq fw_left

 cmp #$41
 beq bw_left

 cmp #$22
 beq left_dur

 ais #$08
 bra left__

fw_left ais #$08
fw_left_ mov #$32,motion_type
 clr stop_flag
 bra left_
bw_left ais #$08
bw_left_ mov #$42,motion_type
 clr stop_flag
 bra left_
_fw
 mov #$33,motion_type
 bra dur_ccw
_bw
 mov #$44,motion_type
 bra dur_ccw

left_dur ais #$08
 mov #$00,motion_type
 bra dur_ccw

left__
 mov #$22,motion_type

left_ lda #$19
 sta DDRD
 cli
 lda T2SC0
 mov #$48,T2SC0 ; enable remote control interrupt

oto_left lda BPTA
 and #$F0
 sta BPTA
 lda sinyal
 sta temp
 bclr 6,PTC ; left LED on
 mov #$AA,temp_1 ; LED flag set
STE_CCW ldhx #STECCW ; CCW signal forms start address
LOOP_1

 lda stop_flag
 bne dur_ccw
 lda motion_type
 and #$0F
 cmpa #$02
 bne dur_ccw
 dbnz temp,ilerisi_c
 lda temp_1
 cmp #$AA
 beq sondur_ccw
yak_ccw lda sinyal
 sta temp
 bclr 6,PTC ; left LED on
 mov #$AA,temp_1 ; LED flag set
 bra ilerisi_c
sondur_ccw lda sinyal
 sta temp
 bset 6,PTC ; left LED off
 mov #$BB,temp_1 ; LED flag off
ilerisi_c lda BPTA ; Step motor drive port buffer
 and #$0F
 ora 0,x
 sta BPTA
 sta PTA

 bsr wait
 incx
 cpx #$30
 blt LOOP_1
 lda step_num_flag ; if step number = 0, do 1 step
 beq single_ccw
 inc A_STPSTE
 dbnz STPSTE,STE_CCW ; Go till STPSTE: Step number
 rts
single_ccw
 inc A_STPSTE
 bra STE_CCW

dur_ccw rts

wait clr count+1
 lda SPDSTEE ; Step motor speed. Speed $00 ... $55
 ; Speed 0,1,2,3...8 (8 : 1f, 0 : 55)
 sta count

m_wait dbnz count+1,m_wait
 dbnz count,m_wait
 rts

h_second clr say+1
 clr say+2
 mov #2,say

hsecond dbnz say+2,hsecond
 dbnz say+1,hsecond
 dbnz say,hsecond
 rts

right:
 lda motion_type
 beq right__
 jsr eof_segment

 lda motion_type
 cmp #$33
 beq fw_right_
 cmp #$44
 beq bw_right_
 cmp #$31
 beq fw_
 cmp #$41
 beq bw_
 cmp #$32
 beq fw_right
 cmp #$42
 beq bw_right

 cmp #$11
 beq right_dur

 ais #$08

 bra right__

fw_right ais #$08
fw_right_ mov #$31,motion_type
 clr stop_flag
 bra right_
bw_right ais #$08
bw_right_ mov #$41,motion_type
 clr stop_flag
 bra right_
fw_ mov #$33,motion_type
 bra dur_cw
bw_ mov #$44,motion_type
 bra dur_cw
right_dur ais #$08
 mov #$00,motion_type
 bra dur_cw

right__ mov #$11,motion_type

right_ lda #$19
 sta DDRD
 cli
 lda T2SC0
 mov #$48,T2SC0 ; enable remote control interrupt
oto_right lda BPTA
 and #$F0
 sta BPTA
 lda sinyal ; signal timing
 sta temp
 bclr 3,PTC ; right LED on
 mov #$AA,temp_1 ; LED ON flag set
STE_CW ldhx #STECW ; CW signal forms start address
LOOP_2
 lda stop_flag
 bne dur_cw
 lda motion_type
 and #$0F
 cmpa #$01
 bne dur_cw
 dbnz temp,ilerisi
 lda temp_1
 cmp #$AA
 beq sondur_cw

yak_cw lda sinyal
 sta temp
 bclr 3,PTC ; right LED on
 mov #$AA,temp_1 ; LED flag on
 bra ilerisi
sondur_cw lda sinyal
 sta temp
 bset 3,PTC ; right LED off
 mov #$BB,temp_1 ; LED flag off
ilerisi lda BPTA ; Step motor drive port buffer
 and #$0F
 ora 0,x
 sta BPTA
 sta PTA
 jsr wait
 incx
 cpx #$2C
 blt LOOP_2
 lda step_num_flag ; if step number flag = 0, do 1 step
 beq single_cw
 inc A_STPSTE
 dbnz STPSTE,STE_CW ; STPSTE: Step number
 rts

single_cw
 inc A_STPSTE
 bra STE_CW

dur_cw rts

9.2.4 Path Measurement Sensor Program

The value of the path travelled is calculated by the number of interrupts coming from the

path measurement sensor. IRQ input is used for this part of the application.

The path measurement counter is cleared when an action starts.

* -- *
* YOL_KES - Path measurement interrupt routine *
* -- *

YOL_KES: sei
 pshh
 ldhx ACTUAL_1
 aix #$1
 sthx ACTUAL_1
 lda mode
 cbeqa #$1,attla_adc

return pulh
 cli
 rti

9.2.5 Obstacle Detection Program

The flowchart of the obstacle detection program is given in Figure 9.8.

Figure 9.8: The flowchart of the program

Obstacle perceive
program

genrate 10 pulse at
40KHz via µc

enable receiver
interrupt

clear counter
start counter

catched pulse >
#$8

counter>
limit

perform
stop

process

perform
new_speed

process

Y

Y
return

N

N

perform receiver
interrupt program

increment number of
caught pulse return

The source code of the program is given below:

ult_sen
 lda motion_type
 and #$F0
 cmp #$30
 bne return
 ldx #$14
 bset 2,PTB ;set PTB2
 bclr 4,PTB ;clear PTB4

_40KHz lda #$5
 dbnza *
 nop
 lda PTB
 eor #$14
 sta PTB
 decx
 bne _40KHz
 lda T2SC1
 mov #$48,T2SC1 ;enable intterrupt for ultrasonic sensor
 cli ;enable interrupts

wait_mod:

ldhx #$061A ; 25000 cycle ~0,01 sn (3,4/2=1,7m
 ; sensor range)

back_con lda ult_con
 cmp #$08 ; catch 8 pulse
 bge block_
 aix #-1
 cphx #$00
 bne back_con
 lda T2SC1 ; disable interrupt(Timer2 channel 1)
 mov #$08,T2SC1
 clr ult_con
 clr ult_flag
 sei
 bset 0,PTD
 jsr new_speed
 mov #$1,mode
 bra return
block_ sei
 lda T2SC1
 mov #$08,T2SC1
 lda motion_type
 psha ;save motion_type
 lda SPDMOTION
 psha
 mov #$FF,ult_flag ;set ult_flag if there is a block
 mov #$BB,mode ;IRQ on
 jsr stop
 clr old_SPD
 mov #$1,SPDMOTION
 clr stop_flag
 pula
 sta SPDMOTION
 pula
 sta motion_type
 clr ult_con
 clr ult_flag
 bra ult_sen

9.2.6 IR Remote Control Decoding Program

The IR remote control signal is received by a receiver circuit. The output of this circuit is

on TTL level. The output of this device is connected to two points: PTD1 and PTD6.

PTD6 generates an interrupt and PTD1 reads this signal. The flowchart of the program is

given in Figure 9.9.

The source code of the IR decoding program is given bellow.

* -- *
* CODE_READ - Code_Read is designed as a subroutine *
* Code Value is stored in "CODE" *
* Code_read works with Code_Eva *
* Code_Eva return Function *
* -- *

Code_Read:

poll clr code
 clr shift
 lda PTD
 and #2
 beq poll ; Wait for remote signal
on_1 clrx
st_p lda PTD
 and #2
 beq start
 mov #3,count
j_2 dbnz count,j_2
 cpx #$FF
 beq st_p
 incx
 bra st_p
start cpx #$44 ; time spent in logical 1
 blo poll
 clrx
back_1 lda PTD
 and #2
 bne to_1
 mov #3,count
j_3 dbnz count,j_3
 incx
 cpx #$B2 ; upperlimit of start bit: AC+5
 bhi poll
 bra back_1
to_1 cpx #$A7 ; lowerlimit of start bit: AC-5
 blo poll

Start

Stop

Read Port

Read Port

Read Port

Read Port

Read Port

1
Yes

Yes

Yes

Yes

Logical 0

Logical 1

BitNum ++

BitNum ++

Yes

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

No

No

No

No

No

Count=0

Count=0

Count=0

Count>T

C ount~ 3T

Count++

Count++

Count++

Count-1

1

0

1

BitNum=8

0

Count~2T

Count~3T

Figure 9. 9: The flowchart of the IR Code Decoder program

BASLA clr code
 clr shift
back clrx
back_2 lda PTD
 and #2
 beq to_0
 mov #3,count
j_4 dbnz count,j_4
 incx
 cpx #$2A ; upperlimit of the time spent in 1: 24+5
 bhi poll
 bra back_2

to_0 cpx #$1D ; lowerlimit of the time spent in 1: 24-5
 blo poll

back_3 lda PTD
 and #2
 bne next
 mov #3,count
j_5 dbnz count,j_5
 incx
 cpx #$82 ; upperlimit of 2T : 7C+5
 bhi poll
 bra back_3

next cpx #$4C ; lowerlimit of T
 blo poll

 cpx #$57 ; upperlimit of T
 blo zero
 cpx #$77 ; (7C-5) ile (52+5) arası
 blo poll

one sec
 bra jump
zero clc
jump rol code ; Remote control code
 ldx shift
 incx
 stx shift
 cpx #$08
 blt back

pol lda PTD
 and #2
 beq pol ; logical 1?

on_12 ldhx #$3000
st_p2 lda PTD
 and #2
 beq pol
 aix #-1
 cphx #$0000
 beq code_eva
 bra st_p2

* -- *
* CODE_EVA - Remote Control Code Evaluation Routine *
* After Remote Code Reader Routine *
* Code is in "CODE" *
* The evaluation of the code is in "function" *
* -- *

code_eva jsr di ; Key press sound

 mov #1,function ; function=1
 lda code ; Remote control code
 tax ; copy of acc
 and #$0F ; filtering
 cmp #$01 ; Number codes are $91, 01, 81, 41, C1
 beq donus ; Number 21, A1, 61, E1, 11

 inc function ; function=2
 txa ; refresh acc
 cmp #$29
 beq Donus ; Step Number, Code is $29

 inc function ; function=3
 txa ; refresh acc
 cmp #$A9 ; Stop
 beq Donus ; Stop, Code is $A9

 inc function ; function=4
 txa ; refresh acc
 cmp #$07 ; Go to stored programs
 beq donus ; Menu, Code is $07

 inc function ; function=5
 txa
 cmp #$A7 ; Write to Flash
 beq donus ; Flash, Code is $A7

 inc function ; function=6
 txa
 cmp #$5D ; Switch to teaching mode
 beq donus ; Teach_Mode, Code is $5D

 inc function ; function=7
 txa
 cmp #$A5 ; Speed of Steering motor
 beq donus ; Speed_Ste, Code is $A5

 inc function ; function=8
 txa
 cmp #$1D ; Speed of motion
 beq donus ; Speed_Motion, Code is $1D

 inc function ; function=9
 txa
 cmp #$FD ; Destination
 beq donus ; Destination, Code is $FD

 inc function ; function=10
 txa ;
 and #$0F
 cmp #$03 ; straight motion (+)
 beq donus ; Str_motion, Codes are $33, $73, $B3, $F3

 inc function ; function=11
 txa
 cmp #$09
 beq donus ; Steering and motion control
 txa
 cmp #$49

 beq donus ; Ste_motion, Codes are $09, $89, $49, $C9
 txa
 cmp #$89
 beq donus
 txa
 cmp #$C9
 beq donus

 mov #0,function ; Unused code
donus rts

9.2.7 Light Level Measurement

The source code of the program is given below:
con_adc clr adc_step
 lda #$00
 sta ADSCR ; ADSCR : adc int disable; single
 ; conversion; 0 for PTB0
read_back lda ADSCR ; check ADSCR until CoCo bit is set
 and #$80
 beq read_back ; read_back loop
 lda ADR ; conversion result in ADR
 cmp #$AA
 bhi light
 lda #$00
 sta PTB
 bra ult_sen
light lda #$FF
 sta PTB

9.2.8 Data Entry Programs

There are four data entry programs, named:

• Destination

• Step number

• Motion speed

• Steering speed

The details of these programs are given in this section.

9.2.8.1 Destination Value Entry

This program reads four digit value then converts this value into two digit hexadecimal

number as the destination value. The flow chart of this program is given in Figure 9.10.

Perform the
functions

Code_Read
Code_Eva

func=1
Perform the

Error subroutine
Return main function
and wait for command

N

Y

Perform the
convert subroutine

store converted
value in DEST_1

Perform the
functions

Code_Read
Code_Eva

func=1
Perform the

Error subroutine
Return main function
and wait for command

N

Y

Perform the
convert subroutine

store converted
value in DEST_2

Perform
destination

function

Figure 9. 10-a: The flowchart of the Destination Entry program (part-1)

Perform the
functions

Code_Read
Code_Eva

func=1
Perform the

Error subroutine
Return main function
and wait for command

N

Y

Perform the
convert subroutine

store converted
value in DEST_4

Perform the
functions

Code_Read
Code_Eva

func=1
Perform the

Error subroutine
Return main function
and wait for command

N

Y

Perform the
convert subroutine

store converted
value in DEST_3

set Destina flag

Perform the
donusum subroutine

return

Figure 9. 10-b: The flowchart of the Destination Entry program (part-2)

The source code of the program is given blow:

* -- *
* DESTINATION - Read destination routine: 4 digit value *
* Store (DESTINA_1, DESTINA_2, DESTINA_3, DESTINA_4)
* Goto OKU for next action *
* -- *

Destination:
 clr DESTINA_1
 clr DESTINA_2
 clr DESTINA_3
 clr DESTINA_4
 clr Destina ; No Destination values
 jsr code_read ; Read the MSD of destination
 sei ; Disable all interrupt
 lda T2SC0
 mov #$08,T2SC0
 lda function
 cmp #1
 bne neg_5
 bsr convert ; convert code to number
 sta DESTINA_1
 jsr code_read ; Read the Second digit of destination
 lda function
 cmp #1
 bne neg_5
 bsr convert ; convert code to number
 sta DESTINA_2
 jsr code_read ; Read the third digit of destination
 lda function
 cmp #1
 bne neg_5
 bsr convert ; convert code to number
 sta DESTINA_3
 jsr code_read ; Read the LSD of destination
 lda function
 cmp #1
 bne neg_5
 bsr convert ; convert code to number
 sta DESTINA_4
 mov #$44,Destina ; A value is entered into destination
 bsr donusum
 bra next_1

neg_5 jsr hata
next_1 cli ; enable all interrupt
 lda T2SC0
 mov #$48,T2SC0
 rts

* -- *
* CONVERT - Convert IR data to number *
* Read code, return number in ACC *
* -- *

convert lda code
 and #$F0
 lsra
 lsra
 lsra
 lsra
 sta temp
 and #$2
 asla
 sta temp_1
 lda temp

 and #$4
 lsra
 ora temp_1
 sta temp_2
 lda temp
 and #$1
 asla
 asla
 asla
 sta temp_1
 lda temp
 and #$08
 lsra
 lsra
 lsra
 ora temp_1
 ora temp_2
 inca
 cmp #$0A
 bne atlat
 clra
atlat rts

* ---*
* DONUSUM: digit decimal number will be converted to hexadecimal *
* 4 digit will be respectively in DESTINA_1, DESTINA_2, DESTINA_3, DESTINA_4 *
* Result will be in DEST_1 ve DEST_2 *
* -- *

Donusum:
 clr DEST_1
 clr DEST_2

* Birler basamağı: Aynen sonuca katıldı

 lda DESTINA_4
 sta DEST_2

* Onlar basamağı 10 ile çarpılıp sonuca katıldı

 lda DESTINA_3
 ldx #$0A ; 10 ile çarma
 mul ; sonuç X + A da
 sta temp_3
 stx temp_2
 bsr topla

* Yüzler basamağı 100 ile çarpılıp sonuca katıldı

 lda DESTINA_2
 ldx #$64 ; 100 ile çarma
 mul ; sonuç X + A da
 sta temp_3
 stx temp_2
 bsr topla

* Binler basamağı 1000 ile çarpılıp sonuca katıldı
* 1000 ile çarpma iki aşamalı gerçekeleşebilir : 125*8

 lda DESTINA_1
 ldx #$7D ; 125 ile çarma
 mul ; sonuç X + A da
 sta temp_3
 stx temp_2
 sta temp_4 ; yedek

 asl temp_3
 asl temp_3

 asl temp_3
 asl temp_2
 asl temp_2
 asl temp_2
 lda temp_4
 lsra
 lsra
 lsra
 lsra
 lsra
 ora temp_2
 sta temp_2
 bsr topla
 rts

topla lda temp_3
 add DEST_2
 sta DEST_2
 lda temp_2
 adc DEST_1
 sta DEST_1
 rts

9.2.8.2 Step Number Entry

The step number of steering can be given in two digit value. This program read these two

digit value and convert into hexadecimal value. The flow chart of the step number entry

program is given in Figure 9.11.

Source code of the step number entry program is blow.

* -- *
* STEPNUMBER - Read step number routine : 2 digit value *
* Store (STEPNUM_1, STEPNUM_2 *
* Goto OKU for next action *
* -- *

Step_Number:
 clr STEPNUM_1
 clr STEPNUM_2
 clr Step_num_flag ; No Step number value
 jsr code_read ; Read the MSD of step number
 sei ; disable all interrupt
 lda T2SC0
 mov #$48,T2SC0
 lda function
 cmp #1
 bne neg_8
 jsr convert ; convert code to number
 sta STEPNUM_1
 jsr code_read ; Read the LSB digit of step number
 lda function
 cmp #1
 bne neg_8
 jsr convert ; convert code to number
 sta STEPNUM_2
 mov #$FF,Step_num_flag ; A value is entered into Step Number Flag
 lda STEPNUM_1
 ldx #$0A
 mul

 add STEPNUM_2
 sta STPSTE ; 8 bit Number of step
 cli ; enable all interrupt
 lda T2SC0
 mov #$48,T2SC0
 bra next_2

neg_8 jsr hata
next_2 cli ; enable all interrupt
 lda T2SC0
 mov #$48,T2SC0
 rts

Perform the
functions

Code_Read
Code_Eva

func=1
Perform the

Error subroutine
Return main function
and wait for command

N

Y

Perform the
convert subroutine

store converted
value in STPNUM_1

Perform the
functions

Code_Read
Code_Eva

func=1
Perform the

Error subroutine
Return main function
and wait for command

N

Y

Perform the
convert subroutine

store converted
value in STPNUM_2

set step_num_flag

calculate STPSTE
from STPNUM_1,2

return

Perform
step_num
function

Figure 9. 11: The flowchart of the Step Number Entry program

9.2.8.3 Motion Speed Entry

Motion speed is one digit value and it is read by motion speed program. The program is

given blow.

* -- *
* SPEED_MOTION- Read speed of motion routine : 1 digit *
* Stote speed in to SPMOTION *
* Goto OKU for next action *
* -- *

Speed_Motion:
 jsr code_read ;
 sei ; Disable all interrupt
 lda T2SC0
 mov #$08,T2SC0
 lda function
 cmp #1
 bne neg_2
 jsr convert ; convert code to number on ACC
 cmp #$7
 blt atla_14
 lda #$06
atla_14 ldhx #$0000
 sta temp
 sta SPDMOTION
 beq atla_15
ekle aix #$7F
 aix #$7F
 dbnz temp,ekle
atla_15 sthx Speed ; 00 = 0, FE = 1, 1FD=2, 2FC=3, 3FB=4,
4FA=5, 5F9=6
 jsr q_second
 bra next_3

neg_2 jsr hata
next_3 cli ; enable all interrupt
 lda T2SC0
 mov #$48,T2SC0
 rts

9.2.8.4 Steering Speed Entry

Steering speed is one digit value and it is read by motion speed program. The program is

given blow and flow chart is given in Figure 9.12.

* -- *
* SPEED_STEE - Read speed of steering routine : 1 digit *
* Calculate delay for this speed *
* Stote delay in to SPDDIRSTE *
* Goto OKU for next action *
* -- *

Speed_Stee:
 jsr code_read ; Read speed of steering
 sei ; Disable all interrupt
 lda T2SC0

 mov #$08,T2SC0
 lda function
 cmp #1
 bne neg_1
 jsr convert ; convert code to number
 sta Speed_st ; 0... 9
 inca
 ldhx #$0066

Perform the
functions

Code_Read
Code_Eva

func=1
Perform the

Error subroutine
Return main function

and wait for command
N

Y

Perform the
convert subroutine

store converted
value in Speed_st

SPDSTEE=66

SPDSTEE=SPDSTEE - 9

Speed_st=Speed_st -1

Speed_st=
0

return

Y

N

perform
speed_stee

Figure 9. 12: The flowchart of the Steering speed Entry program

eksit aix #-9

 deca
 bne eksit
 stx SPDSTEE ; Adjustment, multiplied by 2 !!!
neg_1 ldhx #$E02F
 mov Speed_st,temp
 inc temp
looop aix #$1
 dbnz temp,looop
 lda 0,x
 sta sinyal
 cli ; enable all interrupt
 lda T2SC0
 mov #$48,T2SC0
 rts

9.2.9 Motion Speed Control Programs

There are three speed control programs;

• Speed up

• Speed down

Source code of this program are as follows.

9.2.9.1 Speed Up

Whenever “Speed up” key is pressed, this program is activated. This program is increase

the speed of main program by one step. Program controls the highest speed.

speed+ lda SPDMOTION
 cmp #$6
 bge sinir
 jsr eof_segment
 lda SPDMOTION
 inca
 sta SPDMOTION
 sta old_SPD
 ldhx T1CH0H
 aix #7F
 aix #7F
 sthx T1CH0H
 sthx speed
hopa jmp rtf_int
sinir mov #$6,SPDMOTION
 mov #$6,old_SPD
 bra hopa

9.2.9.2 Speed Down

Whenever “Speed down” key is pressed, this program is activated. This program is

decrease the speed of main program by one step. Program controls the lowest speed.

speed- lda SPDMOTION
 cmp #$0
 ble sinira
 jsr eof_segment
 lda SPDMOTION
 deca
 sta SPDMOTION
 sta old_SPD
 ldhx T1CH0H
 aix #-7F
 aix #-7F
 sthx T1CH0H
 sthx speed
hoppa jmp rtf_int

sinira mov #$0,SPDMOTION
 bra hoppa

durdur jsr stop
 jmp rtf_int

9.2.10 Stop and End of Segment

Stop and End of Segment programs are prepared for stop motion and storing segment

values.

9.2.10.1 Stop

Stop program, stop the main motor. If a forward type motion is in action, slow down

process taking in account. The flow chart of the stop program is given in Figure 9.13.

motion_type=
33:32:31

speed=5

speed = speed-1set stop_flag

motion_type=0

Perform the
eof_segment

subroutine

clear motion_type
clear old_SPD

return

Y

Y

Y

N

N

N

slow down then stop

stop

stop process

Figure 9. 13: The flowchart of the Stop program

The stop program source code is blow.

* -- *
* STOP - Stop Control Subroutine *
* 90 right Forward, 91 Right Backward, 92 Left forward, *
* 93 Left Backward *
* CC left, CE right, CD forward, CF backward *
* End of segment *
* -- *

Stop:
 lda motion_type
 cmp #$31 ; Right + forward
 beq yavasla
 cmp #$32 ; Left + forward
 beq yavasla
 cmp #$33 ; forward
 beq yavasla
 bra dur

yavasla clrx
 clra
 ldhx Speed ; last speed
geri_2 cphx #0005
 bls dur
 aix #-01
 sthx T1CH0H ; TUCATU moves forward until stop
 jsr gecik
 bra geri_2

dur sthx speed
 lda #$F0
 sta PTD
 lda #$00
 sta PTA
 mov #$6D,BPTC ; RED lights are on
 mov #$6D,PTC
 mov #$11,stop_flag ; Indicate a stop action
 lda motion_type
 beq next_7
 bsr eof_segment

next_7 clr motion_type
 clr old_SPD
 rts

9.2.10.2 End of Segment

At the end of each segment, segment values are written in RAM area. The flowchart of the

“End of Segment” program is given in Figure 9.14.

The source code of the program is given as follows.

* -- *
* END of SEGMENT - Write segment parameters into RAM *
* -- *

eof_segment:
 lda ult_flag
 cbeqa #$FF,zipla4
 lda mode
 cmp #$AA
 bne zipla3
 ldhx #$100 ; finding segment start address
 lda segment
 beq zipla
artir aix #$6
 deca
 bne artir
zipla
 lda motion_type
 sta 0,x ; type of action
 lda old_SPD
 sta 1,x
 lda SPDSTEE ; Speed of Steering
 sta 2,x
 lda A_STPSTE
 sta 3,x ; Number of steps
 lda ACTUAL_1

ult_flag=on

mode=teach_
mode

H:X=100
ACC=segment

H:X=H:X+6
dec ACC

ACC=0

 <X>=motion_type
<X+1>=old_SPD

 <X+2>=SPDSTEE
 <X+3>=A_STPSTE
 <X+4>=ACTUAL_1
 <X+5>=ACTUAL_2

 motion_type=0
old_SPD=0

SPDSTEE=0
A_STPSTE=0
ACTUAL_1=0
ACTUAL_2=0

inc segment

segment
number exceed

return

Y

N

 Y

N

N

 Y

 Y

N

 calculation of segment start adress

write parameters of segment
pointed by index register

max segment number is 42

clear segment parameters

Perform
eof_segment

function

 Figure 9. 14: The flowchart of the End of Segment program

 sta 4,x
 lda ACTUAL_2 ; Value of destination msb
 sta 5,x ; Value of destination lsb
 lda segment
 cmp #$42
 ble zipla2
 jsr di
 jsr di
 bra zipla3
zipla2 inc segment

zipla3 lda #$00 ; number of steps for steering

 clr code_old
 sta step_num_flag ; Step number flag
 sta Dest_1
 sta Dest_2
 sta Destina ; Destination flag
 sta ACTUAL_1
 sta ACTUAL_2
 sta STPSTE
 sta A_STPSTE
 lda #$00
 sta PTA ; Step motor initial values
 sta BPTA ; Step motor buffer

zipla4
 jsr da ;
 rts

9.2.11 Flash Erase and Write

For playback activity, role and segment parameters must be stored into Flash. In order to

do this, Flash_erase, flash_write programs are written. In this part, flowcharts and source

code of these programs will be seen.

9.2.11.1 Flash Erase

In order to write a data or a program into flash, related flash area must be erased. Erase

program must be in Ram are. First of all Flash_Erase program transfer into RAM area,

then run this program.

The transfer and flash program flow chart is given in Figure 9.15 and Figure 9.16. The

source code of this program is blow.

* -- *
* ERASE_FLASH - First move flash erase program into RAM *
* Then run erase-flash program *
* -- *

erase_flash:
 ldhx #Flash_Erase-1
 sthx bas ; start address of flash_erase program
 ldhx #sil_son
 sthx son ; end address of flash_erase program

* ----- Block move ----- *

 ldhx son ; end address of block
devam lda ,x

bas= start adress of erase routine
son=end adress of erase routine

put son adress in
H:X register

load ACC from in location
specified by H:X

push ACC into stack

decrement H:X

H:X=bas

Execute Flash Erase
routine in RAM

N

Y

Erase Flash
subroutine

return

 Figure 9. 15: The flowchart of the Transfer and Flash Erase program

 psha
 aix #-1
 cmphx bas ; start address of block
 bne devam

 ldhx flash_start_adr ; start address of flash
 sthx temp
 tsx ; Start address of the erease program
sthx temp_2 ; Save program start address
 jsr ,x ; Run flash-erase program for first 128B
 ldhx flash_start_adr
 aix #$7F
 incx
 sthx temp ; second area
 ldhx temp_2
 jsr ,x ; Run flash-erase program for second 128B
 ais #{sil_son-Flash_Erase+1}
 rts

Execute Flash
Erase routine in

RAM

set ERASE bit in FLCR
Read FLBPR

H:X=flash_start_adres

write any data to address
pointed by H:X register

wait for 10 µs

set HVEN bit in FLCR

wait for 1ms

clear ERASE bit in FLCR

wait for 5 µs

clear HVEN bit in FLCR

wait for 1µs

return

 Figure 9. 16: The flowchart of the Flash Erase program

Flash_Erase:

* ----- Flash erase ----- *

* 1. step : ERASE<-1
 lda #$02
 sta FLCR

* 2. step : Read FLBPR
 lda FLBPR ; read flash block protect register

* 3. step : Write a dummy data into erased area
 ldhx temp
 sta ,x ; any address in the page

* 4. step : Wait for 10us, each step is 400ns, so 10.000/400=25 step is needed
 lda #$07
 nop
 nop
 dbnza *

* 5. step : HVEN<-1
 lda #$A
 sta FLCR

* 6. step Wait for 1ms, 1.000.000/400=2.500 step is needed
 ldx #$4
 nop
 nop
azalt lda #$CE
 dbnza *
 nop
 dbnzx azalt

* 7. step : ERASE<-0
 lda #$8
 sta FLCR

* 9. step : Wait for 5us, 5000/400=13 step is needed
 lda #$4
 dbnza *

* 9. step : HVEN<-0
 clra
 sta FLCR

* 10. step : Wait for 1us, 1000/400=3 step is needed
 nop
 nop
sil_son rts

9.2.11.2 Flash Write

bas= start adress of write routine
son=end adress of write routine

put son adress in
H:X register

load ACC from in location
specified by H:X

push ACC into stack

decrement H:X

H:X=bas

Execute Falsh write
routine in Ram

N

Y

dest= start adress of erase flash page
source=start adres of source data
temp_4=4

temp_4=0 YN

Perform
Write Flash
subroutine

transfer flash write routine
into RAM using stack pointer

temp_4←temp_4-1

return

 Figure 9. 17: The flowchart of the Transfer and Flash Write program

Execute Flash write
routine in Ram

ROW=64
set PGM bit FLCR

read FLBPR

put dest address in
H:X register

write any data in location
specified by H:X

wait 10 us

set HVEN bit FLCR

wait 5 us

put source address in
H:X register

load ACC from in location
specified by H:X

put dest address in
H:X register

store ACC in location
specified by H:X

increment source address
increment dest address

decriment ROW

ROW=0

clear PGM in FLCR

wait 5 us

clear HVEN in FLCR

wait 1 us

N

Y

return

 Figure 9. 18: The flowchart of the Flash Write program

* -- *
* WRITE_FLASH - First move flash write program into RAM *
* Then run write-flash program *
* -- *

Write_flash:

* ----- Block move ----- *

 ldhx #RamWriteEE-1
 sthx bas ; start address of flash_erase program
 ldhx #PGM_son
 sthx son ; end address of flash_erase program

 ldhx son ; end address of block
devamm lda ,x
 psha
 aix #-1
 cmphx bas ; start address of block
 bne devamm

 mov #$4,temp_4
 ldhx flash_start_adr ; start address of role in FLASH
 sthx dest
 ldhx #$0100 ; start address of role in RAM
 sthx source

 tsx ; Start address of flash_yaz program
 sthx temp
dallan jsr ,x ; Run write operation for one block
 ldhx temp
 dbnz temp_4,dallan
 ais #{PGM_son-RamWriteEE+1}
 rts

* ----- Flase write ----- *

RamWriteEE:
 mov #Row_Size,Row

* 1. step PGM<-1
 lda #1
 sta FLCR

* 2. step read FLBPR
 lda FLBPR ; read flash block protect register

* 3. step write any data into writen area
 ldhx dest
 sta ,x ; write any data

* 4. step wait for 10us, each step is 400ns, 10.000/400=25 step
is needed
 lda #$07
 nop
 nop
 dbnza *

* 5. step HVEN <- 1
 lda #9
 sta FLCR

* 6. step wait for 5us, 5000/400=13 step is needed
 lda #$4
 dbnza *

RamWriteEE1:

* 7. step write data into Flash
 ldhx source
 lda ,x
 ldhx dest
 sta ,x
 inc dest+1
 bne RamWriteEE2
 inc dest

RamWriteEE2:
 inc source+1
 bne RamWriteEE3
 inc source

* 9. step wait for 30-40us, 30000/400=16 step is needed

RamWriteEE3:
 lda #$10
 dbnza *
 dbnz Row,RamWriteEE1 ; 4us is needed after 64 byte write
 operation

* 9. step write all data of 64 byte data

* 10. step PGM<-0
 lda #8
 sta FLCR

* 11. step wait for 5us, 5000/400=13 step is needed
 lda #$4
 dbnza *

* 12. step HVEN<-0
 clra
 sta FLCR

* 13. step wait for 1us, 1000/400=3 step is needed
 nop
 nop
 nop
PGM_son rts

9.2.12 Teach Mode

Teach mode or traning mode is one of the features of TUCATU. The flow chart of teach

mode is given in Figure 9.19.

H:X=100

H:X=200

clear <H:X>

H:X +1

mode=AA
segment=0

return

perform
teach mode

process

clear dynamic memory area
($100-$200)

switch to teach mode
clear segment number

 Figure 9. 19: The flowchart of the Teach mode program

The source code of teach mode is given blow.

* -- *
* Teaching Mode *
* -- *

 clr mode ; mode=0 ????!!! Teaching mode
 ; mode=1 Autonomous mode
 clr function ; clear function code
 clr segment ; clear segment number

 lda T2SC1 ; T1SC1 okunda ekleme tarihi 11_subat
 lda #$08 ; %00001000 11_subat
 sta T2SC1 ; T1SC1 CHOF bayragi silindi,interrupt-off
11_subat

 lda #$04
 sta INTSCR ; IRQ Interrup Enable

 lda T2SC0
 mov #$48,T2SC0 ; Timer Input Capture Interrupt Enable
 cli ; Enable all interrupt

bekle bra bekle ; Wait for interrupt

9.2.13 Playback Program

In the playback mode, master may select any role; TUCATU playbacks this role. The flow

chart of the menu program is given blow.

Perform menu
process

perform stop
subroutine

perform
code_read

process

func=1
perform
Error

process

return and wait for
user command

perform
convert
process

store converted
adress in

flash_start_adres
and pointer

old_motion←$00
old_SPD←$00
old_speed←$00
stop_flag←$00

1

clear old parameters

 Figure 9. 20-a: The flowchart of the Menu program (part-1)

1

take
motion_type
SPDMOTION,
SPDSTEE,STPSTE
DEST_1,
DEST_2 adres pointed by
pointer

DEST_1=0

DEST_2 =0

destina←$00destina←$FF

STPSTE=0

step_num_flag←$00step_num_flag←$FF

motion_t
ype=00

N

Y

motion_t
ype=33

N

Y

motion_t
ype=44

N

Y

motion_t
ype=11

N

Y

motion_t
ype=22

N

Y

motion_t
ype=31

N

Y

motion_t
ype=32

N

Y

motion_t
ype=41 Y

A B C

D

E

F

G

H

motion_t
ype=42 Y

IA

N

N

Take segment parameters

set destina flag
if there is a destination

set step_num_flag
if there is a steering
movement

End of ROLE forward backward

right

left

forward-right

forward-left

backward-right

backward-leftt

end of
ROLE

 Figure 9. 20-b: The flowchart of the Menu program (part-2)

A
perform

stop
process

return and wait for
user command

B
old_

motion=
44:42:41

perform
stop

process

ACTUAL_1←$00
ACTUAL_2←$00

stop_flag←00
destina←$FF

perform
power

process

old_motion← $332

C
old_

motion=
33:32:31

perform
stop

process

ACTUAL_1←$00
ACTUAL_2←$00

stop_flag←00
destina←$FF

perform
oto_bw
process

old_motion← $442

stop if previous
motion was
backward,
left-backward
or right-baxkward

stop if previous
motion was
forward,
left-forward
or right-forward

Y

N

Y

N

backward

forward

 Figure 9. 20-c: The flowchart of the Menu program (part-3)

D

old_
motion=

44:41:42:
33:32:31

perform
stop

process

ACTUAL_1←$00
ACTUAL_2←$00

stop_flag←00
set_num_flag←$FF

perform
oto_right
process

old_motion← $112

E

old_
motion=

44:41:42:
33:32:31

perform
stop

process

ACTUAL_1←$00
ACTUAL_2←$00

stop_flag←00
set_num_flag←$FF

perform
oto_left
process

old_motion← $222

F
perform

new_speed
process

old_motion← $312

clear stop_flag
clear destina

set step_num_flag

perform
oto_right
process

G
perform

new_speed
process

old_motion← $322

clear stop_flag
clear destina

set step_num_flag

perform
oto_left
process

stop if previous
motion was
different then
left or right

stop if previous
motion was
different then
left or right

Y

Y

N

N

left

left-forward

right-forward

right

 Figure 9.20-d: The flowchart of the Menu program (part-4)

H
perform
oto_bw
process

old_motion← $412

clear stop_flag
clear destina

set step_num_flag

perform
oto_right
process

I
perform
oto_bw
process

old_motion← $422

clear stop_flag
clear destina

set step_num_flag

perform
oto_left
process

2 set pointer to point
next segment in ROLE

backward-right

right-backward

1

 Figure 9.20-e: The flowchart of the Menu program (part-5)

The source code of menu program is given as follows.

* -- *
* MENU - Read program number routine: 1 digit value *
* Calculate program address *
* Jump to selected program *
* -- *
Menu:
 jsr stop
 mov #$1,mode ; autonomous mode
 jsr code_read ; Read program number
 sei ; disable all interrupt
 lda T2SC0 ; disable T2SC0 interrupt and clear
 interrupt flag
 mov #$08,T2SC0
 cli ;enable IRQ interrupt to count
 lda function
 cmp #1
 bne neg_3
 jsr convert ; convert code to number
 asla ; address need two byte
 sta role ; Role number * 2
 mov #$E0,temp ; Indirect address of flash
 sta temp+1
 ldhx temp ; Flash start address pointer
 lda ,x

 psha
 lda 1,x
 psha
 pulx
 pulh
 sthx flash_start_adr ; Role start address
 sthx pointer ; Segment pointer
 clr old_motion
 clr old_SPD
 clr old_speed
 clr stop_flag
* ----- One segment parameters ----- *

backk lda 0,x ; type of action
 cmp #$00
 beq tamam
 sta motion_type
 lda 1,x ; Speed of motion
 sta SPDMOTION
 lda 2,x ; Speed of Steering
 sta SPDSTEE
 lda 3,x ; Number of steps
 sta STPSTE
 lda 4,x ; Value of destination msb
 sta DEST_1
 lda 5,x ; Value of destination lsb
 sta DEST_2
 ldhx dest_1
 beq dest_zero ; Destination = 0
 mov #$FF,destina
 bra jump_1
dest_zero clr destina
jump_1 lda STPSTE
 beq stp_no_zero
 mov #$FF,step_num_flag
 bra jump_2
stp_no_zero clr step_num_flag

* ----- Action ----- *

jump_2 lda motion_type
 cmp #$33
 beq duz_ileri
 cmp #$44
 beq duz_geri
 cmp #$11
 beq duz_sag
 cmp #$22
 beq duz_sol
 cmp #$31
 beq sag_ileri
 cmp #$32
 beq sol_ileri
 cmp #$41
 beq sag_geri
 cmp #$42
 beq sol_geri

tamam jmp tamamm
neg_3 jmp negg_3

duz_ileri jmp duz_ileri1
duz_geri jmp duz_geri1
duz_sag jmp duz_sag1
duz_sol jmp duz_sol1
sag_ileri jmp sag_ileri1
sol_ileri jmp sol_ileri1
sag_geri jmp sag_geri1

sol_geri jmp sol_geri1

duz_ileri1 lda old_motion
 cmp #$44
 beq duz_ileri2
 cmp #$42
 beq duz_ileri2
 cmp #$41
 beq duz_ileri2
duz_ileri3 clr stop_flag
 mov #$FF,destina
 ldhx pointer
 lda 4,x ; Value of destination msb
 sta DEST_1
 lda 5,x ; Value of destination lsb
 sta DEST_2
 clr ACTUAL_1
 clr ACTUAL_2
 jsr power
 mov #$33,old_motion
 mov SPDMOTION,old_SPD
 jmp bitis
duz_ileri2 jsr stop
 bra duz_ileri3

duz_geri1 lda old_motion
 cmp #$33
 beq duz_geri2
 cmp #$31
 beq duz_geri2
 cmp #$32
 beq duz_geri2
duz_geri3 clr stop_flag
 ldhx pointer
 lda 4,x ; Value of destination msb
 sta DEST_1
 lda 5,x ; Value of destination lsb
 sta DEST_2
 mov #$FF,destina
 clr ACTUAL_1
 clr ACTUAL_2
 jsr oto_bw
 mov #$44,old_motion
 jmp bitis
duz_geri2 mov #$33,motion_type
 jsr stop
 mov #$44,motion_type
 bra duz_geri3

duz_sag1 lda old_motion
 cmp #$33
 beq duz_sag2
 cmp #$44
 beq duz_sag2
 cmp #$31
 beq duz_sag2
 cmp #$32
 beq duz_sag2
 cmp #$41
 beq duz_sag2
 cmp #$42
 beq duz_sag2
duz_sag3 clr stop_flag
 ldhx pointer
 lda 2,x ; Speed of Steering
 sta SPDSTEE
 lda 3,x ; Number of steps
 sta STPSTE

 mov #$11,motion_type
 mov #$FF,step_num_flag
 jsr oto_right
 mov #$11,old_motion
 bra bitis
duz_sag2 jsr stop
 bra duz_sag3

duz_sol1
 lda old_motion
 cmp #$33
 beq duz_sol2
 cmp #$44
 beq duz_sol2
 cmp #$31
 beq duz_sol2
 cmp #$32
 beq duz_sol2
 cmp #$41
 beq duz_sol2
 cmp #$42
 beq duz_sol2
duz_sol3 clr stop_flag
 ldhx pointer
 lda 2,x ; Speed of Steering
 sta SPDSTEE
 lda 3,x ; Number of steps
 sta STPSTE
 mov #$22,motion_type
 mov #$FF,step_num_flag
 jsr oto_left
 mov #$22,old_motion
 bra bitis
duz_sol2 jsr stop
 bra duz_sol3

sag_ileri1 clr destina ; ignore destination value
 clr stop_flag
 bsr new_speed
 jsr oto_right
 mov #$31,old_motion
 mov SPDMOTION,old_SPD
 bra bitis

sol_ileri1 clr destina ; ignore destination value
 clr stop_flag
 bsr new_speed
 jsr oto_left
 mov #$32,old_motion
 mov SPDMOTION,old_SPD
 bra bitis

sag_geri1 clr destina ; ignore destination value
 clr stop_flag
 jsr oto_bw
 jsr oto_right
 mov #$41,old_motion
 bra bitis

sol_geri1 clr destina ; ignore destination value
 clr stop_flag
 jsr oto_bw
 jsr oto_left
 mov #$42,old_motion

bitis ldhx pointer ; Role start address
 aix #6
 sthx pointer

 jmp backk ; Continue

tamamm jsr stop
 jsr dududut
 jsr default
 cli
 lda T2SC0
 mov #$48,T2SC0
 rts

negg_3 jsr hata
 bra tamamm

new_speed
 bsr cal_speed

 ldhx old_speed
 cphx speed
 bhs yavas

hizlan cphx speed
 bhs son1
 aix #02
 sthx T1CH0H ; TUCATU moves forward until stop
 jsr gecik
 bra hizlan

yavas cphx speed
 bls son1
 aix #-01
 sthx T1CH0H ; TUCATU moves forward until stop
 jsr gecik
 bra yavas

son1 mov SPDMOTION,old_SPD
 rts
cal_speed
 ldhx #$0000
 lda SPDMOTION
 sta temp
 beq atla_16
ekle16 aix #$7F
 aix #$7F
 dbnz temp,ekle16
atla_16 sthx Speed

 ldhx #$0000
 lda old_SPD
 sta temp
 beq atla_17
ekle17 aix #$7F
 aix #$7F
 dbnz temp,ekle17
atla_17 sthx old_speed
 rts

CHAPTER - 10

CONCLUSION AND RECOMMENDATION

The main goal of the project was the realization of a low cost, multipurpose robot. The

second goal was the usage of MC6808 as much as possible. The cost of the project is less

than 75 €. The flash capability of MC6808 is used for teaching process. The traveled path,

speed, direction and steering wheel angle values are stored in Flash. In the playback mode

TUCATU reads the trajectory information from Flash.

The following features are given to TUCATU:

• Movement:

o Backward and forward motion: Direction control is provided by H-Bridge

circuit.

o Left and right motion: Rotation control is provided by a stepper motor.

o Speed control: Increase and decrease by using of PWM methods.

• Path Measurement : An optical sensor is used for the measurement of traveled

 path.

• Obstacle Detection : An ultrasonic sensor is mounted on a stepper motor for the

detection of obstacles front.

• Training and Playback: Teaching process is done by a TV remote control. During

teaching mode, all trajectory information is stored in Flash. In the playback

operation TUCATU gets this information from Flash.

• IR Communication : An IR communication facility between TUCATU and the

remote control is provided.

• Light Level Measurement : TUCATU can measure the light level of environment

and decides whether or not to turn on the head light

• Warning and Signal Systems : Warning and signal systems are features of

TUCATU

The obstacle detection system can measure a distance of 10-100 cm. Port A is used for

stepper motors, Port C for warning and signaling, Port D for motor control, Port B for

ADC and ultrasonic sensor.

TUCATU Project may be considered as an integration of five projects:

1. Motion control in 8 directions

2. IR remote control

3. Training and playback

4. Light level measurement

5. Distance measurement

All these are designed and realized in this project.

During the whole study, mechanical, electrical, electronic designs have been done with

what we had. Any professional item and help was not involved. From this point, the project

may be assumed as an original engineering study and application.

In the development phase, we have some difficulties, especially in real time system design.

We used MC6802 development kits which are used in micro computer laboratory in ITU

for overcoming these difficulties.

CHAPTER - 11

REFERENCES

[1] Adalı, E. Mikroişlemciler Mikrobilgisayarlar, Birsen Yay. 1998

[2] Adalı, E. Gerçek Zaman Sistemleri, Sistem Yayıncılık. 1996

[3] M68HC08 Microcontroller Technical Data, Motorola Inc 2002

[4] M68HC08 Microcontroller Reference Manual, Motorola Inc 2002

[5] Wagner Lipnharski “Infrared”,www.ustr.net/infrared/infrared1.shtml, UST

 Reseach Inc. Orlando, Florida, 1999

[6] Berger Lahr, “Formulas + Calculations for Optimum Selection of Stepmotor”.

http://www.ustr.net/infrared/infrared1.shtml

	CHAPTER - 3
	ELECTRICAL MOTORS
	3.1 Main Motor
	3.1.1 Main Motor Drive Circuit
	Figure 3.1: H-Bridge
	Figure 3.2: Final Design of H-Bridge
	3.1.2 Main Motor Speed Control
	Figure 3.3: Motor Control Circuit

	3.2 Steering Wheel Motor
	Figure 3.4: Step motor drive circuit
	Figure 3.5: The form of stepper motor control signals

	3.3 Ultrasonic Sensor Motor
	CHAPTER - 4
	SENSORS

	4.1 Path Measurement Sensor
	Figure 4.1: Path Measurement Sensor

	4.2 Obstacle Sensor
	Figure 4.2: Obstacle Sensor
	Figure 4.3: Ultrasonic receiver and transmitter circuit
	CHAPTER - 5
	LIGHT LEVEL MEASUREMENT
	Figure 5.1: Light Level Measurement Circuit
	Figure 5.2: Head light control circuit
	CHAPTER - 6
	ALARMS AND SIGNALS

	6.1 Signals
	Picture 6.1: Signal system
	Figure 6.1: Light signal circuit

	6.2 Voice
	Figure 6.2: Voice Alarm System
	CHAPTER - 7
	REMOTE CONTROL AND TEACHING

	7.1 IR Remote Control
	Figure 7.1: RECS 80 Format

	7.2 IR Transmitter and Receiver
	Figure 7.2: The Optical IC

	7.3 Decoding of IR Remote Control Signals
	CHAPTER - 8
	HOW TO USE TUCATU
	Figure 8.1: The Remote Control
	CHAPTER - 9
	SOFTWARE

	9.1 Operation Modes
	9.1.1 Free Mode
	9.1.2 Training Mode
	9.1.3 Playback Mode

	9.2 Programs
	9.2.1 Main Program
	Figure 9.1: The flowchart of the Main program
	Figure 9.2: The flowchart of the dispatcher program
	9.2.2 Motion Motor Program

	Figure 9.3: The flowchart of motion decision program
	Figure 9.4 : The flowchart of straight forward motion control program
	Figure 9.5: The flowchart of backward motion control program
	9.2.3 Steering Wheel Motor Program

	Figure 9.6-a : The flowchart of the steering wheel motor control program (left, part-1)
	Figure 9.6-b : The flowchart of the steering wheel motor control program (left, part-2)
	Figure 9.7-a : The flowchart of the steering wheel motor control program (right, part-1)
	Figure 9.7-b : The flowchart of the steering wheel motor control program (right, part-2)
	9.2.4 Path Measurement Sensor Program
	9.2.5 Obstacle Detection Program

	Figure 9.8: The flowchart of the program
	9.2.6 IR Remote Control Decoding Program

	Figure 9. 9: The flowchart of the IR Code Decoder program
	9.2.7 Light Level Measurement
	9.2.8 Data Entry Programs
	9.2.8.1 Destination Value Entry

	Figure 9. 10-a: The flowchart of the Destination Entry program (part-1)
	Figure 9. 10-b: The flowchart of the Destination Entry program (part-2)
	9.2.8.2 Step Number Entry

	Figure 9. 11: The flowchart of the Step Number Entry program
	9.2.8.3 Motion Speed Entry
	9.2.8.4 Steering Speed Entry

	Figure 9. 12: The flowchart of the Steering speed Entry program
	9.2.9 Motion Speed Control Programs
	9.2.9.1 Speed Up
	9.2.9.2 Speed Down

	9.2.10 Stop and End of Segment
	9.2.10.1 Stop

	Figure 9. 13: The flowchart of the Stop program
	9.2.10.2 End of Segment

	Figure 9. 14: The flowchart of the End of Segment program
	9.2.11 Flash Erase and Write
	9.2.11.1 Flash Erase

	Figure 9. 15: The flowchart of the Transfer and Flash Erase program
	Figure 9. 16: The flowchart of the Flash Erase program
	9.2.11.2 Flash Write

	Figure 9. 17: The flowchart of the Transfer and Flash Write program
	Figure 9. 18: The flowchart of the Flash Write program
	9.2.12 Teach Mode

	Figure 9. 19: The flowchart of the Teach mode program
	9.2.13 Playback Program

	Figure 9. 20-a: The flowchart of the Menu program (part-1)
	Figure 9. 20-b: The flowchart of the Menu program (part-2)
	Figure 9. 20-c: The flowchart of the Menu program (part-3)
	Figure 9.20-d: The flowchart of the Menu program (part-4)
	Figure 9.20-e: The flowchart of the Menu program (part-5)
	CHAPTER - 10
	CONCLUSION AND RECOMMENDATION
	CHAPTER - 11
	REFERENCES

